Structure and dynamics of a layer of sedimented particles.

نویسندگان

  • Adar Sonn-Segev
  • Jerzy Bławzdziewicz
  • Eligiusz Wajnryb
  • Maria L Ekiel-Jeżewska
  • Haim Diamant
  • Yael Roichman
چکیده

We investigate experimentally and theoretically thin layers of colloid particles held adjacent to a solid substrate by gravity. Epifluorescence, confocal, and holographic microscopy, combined with Monte Carlo and hydrodynamic simulations, are applied to infer the height distribution function of particles above the surface, and their diffusion coefficient parallel to it. As the particle area fraction is increased, the height distribution becomes bimodal, indicating the formation of a distinct second layer. In our theory, we treat the suspension as a series of weakly coupled quasi-two-dimensional layers in equilibrium with respect to particle exchange. We experimentally, numerically, and theoretically study the changing occupancies of the layers as the area fraction is increased. The decrease of the particle diffusion coefficient with concentration is found to be weakened by the layering. We demonstrate that particle polydispersity strongly affects the properties of the sedimented layer, because of particle size segregation due to gravity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Love-Type Waves in Orthotropic Layer Under the Influence of Heterogeneity and Corrugation

The present problem deals with the propagation of Love-type surface waves in a bedded structure comprises of an inhomogeneous orthotropic layer and an elastic half-space. The upper boundary and the interface between two media are considered to be corrugated. An analytical method (separation of variables) is adapted to solve the second order PDEs, which governs the equations of motion. Equations...

متن کامل

Effect of Amorphous Silica Addition on Martensitic Phase Transformation of Zirconia and Investigation of its Tetragonal Structure Stability Mechanisms

This work is focused on the effect of amorphous SiO2 addition on the phase transformation and microstructural evolution of ZrO2 particles. Considering the structural similarities between the amorphous ZrO2 and its tetragonal structure, XRD results showed initial nucleation of metastable tetragonal ZrO2 from its amorphous matrix upon heat treatment. This metastable phase is unstable in pure ZrO2...

متن کامل

Wettability of boron monolayer using molecular dynamics simulation method

Over the past years, two-dimensional materials such as graphene, phosphorene, silicene, and boron-nitride have attracted the attention of many researchers. After the successful synthesis of graphene, due to its many new applications, researches began to produce nanosheets from other elements, and among these elements, boron was one of the options. In the periodic table of elements, boron is ahe...

متن کامل

Enhanced optical absorption in organic solar cells using metal nano particles

In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...

متن کامل

Simulation of the Effect of a Baffle Structure on Membrane Efficiency Using Computational Fluid Dynamics during the Clarification of Pomegranate Juice

Background and Objectives: Pomegranate juice (PJ) contains large particles that stick to evaporator walls causing off flavors in the concentrate due to burning. Microfiltration is used to clarify PJ. Fouling is a limiting phenomenon that can prevent the industrialization of membrane clarification. Changes in the geometry of the membrane module such as using baffles are useful to decrease this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 7  شماره 

صفحات  -

تاریخ انتشار 2015